Jump to
Table of Contents
Share this
See also
Evaluate n-th power
Evaluate square root
Evaluate cube root
Evaluate log10x
Evaluate sin(x)
All evaluation tools

N-th root calculator

- By Dr. Minas E. Lemonis, PhD - Updated: March 3, 2019

This tool evaluates the n-th root of a number: \(\sqrt[n]{x}\). Enter the the root degree n and the argument x below.

n =
x =
Result:
\(\sqrt[n]{x}\) =
shape details
Table of Contents
Share this

Definitions

General

The n-th root of a number x, is a number r so that rn = x. In modern notation n-th root is written as \(\sqrt[n]{x}\) or x1/n . Typically root degree n is an integer larger or equal to 2. For n=2 the result is called square root while for n=3 cube root. Any non-zero number has n distinct roots of n degree, either real or complex ones. If n is even, there are two real n-th roots of a real x, only if x is positive. These two roots are opposites and the positive one is called principal root. If x is negative and n is even, all roots are complex numbers. On the other hand, if n is odd, there is always a real n-th root for any real x (positive or negative). The n-th roots of 0 are all 0.

Properties

The derivative of the principal n-th root function is:

\[ \left(\sqrt[n] x\right)' = \frac{1}{n}x^{\frac{1-n}{n}} = \frac{1}{n\sqrt[n]{x^{n-1}}} \]

The integral of the n-th root function is given by:

\[ \int \sqrt[n] x\, \mathrm{d}x = \frac{n}{n+1} x^{\frac{n+1}{n}} +C \]

See also
Evaluate n-th power
Evaluate square root
Evaluate cube root
Evaluate log10x
Evaluate sin(x)
All evaluation tools