Jump to
Table of Contents
Share this
See also
Evaluate coth(x)
Evaluate tanh(x)
Evaluate artanh(x)
Evaluate exponential
Evaluate arccot(x)
All evaluation tools

Inverse hyperbolic cotangent calculator

- By Dr. Minas E. Lemonis, PhD - Updated: March 3, 2019

This tool evaluates the inverse hyperbolic cotangent of a number: arcoth(x). Enter the argument x below.

x =
icon

Result:
arcoth(x) =
shape details

ADVERTISEMENT

Table of Contents
Share this

Definitions

General

The inverse hyperbolic cotangent function, in modern notation written as arcoth(x) or arccoth(x) or coth-1x, gives the value t (hyperbolic angle), so that:

\coth {t} = x

The inverse hyperbolic cotangent function accepts arguments in real open intervals (-∞,-1) and (1,∞), because |\coth{x}|\gt 1 for all non-zero real x. Since the hyperbolic cotangent is defined through the natural exponential function \mathrm{e}^x , its inverse can be defined through the natural logarithm function, using the following formula, for real x, with |x|>1:

\mathrm{arcoth}\,{x} = \frac{1}{2}\ln\left(\frac{x+1}{x-1}\right)

Properties

The derivative of the inverse hyperbolic cotangent function is:

\left(\mathrm{arcoth}\,{x}\right)' = \frac{1}{1-x^2}\quad, \left\{x\in\mathbb{R} \,|\, |x| \gt 1 \right\}

The integral of the inverse hyperbolic cotangent function is given by:

\int \mathrm{arcoth}\,{x}\, \mathrm{d}x = x\, \mathrm{arcoth}\,{x} + \frac{\ln\left(x^2-1\right)}{2} + C \quad, \left\{x\in\mathbb{R} \,| \, |x| \gt 1 \right\}

See also
Evaluate coth(x)
Evaluate tanh(x)
Evaluate artanh(x)
Evaluate exponential
Evaluate arccot(x)
All evaluation tools